Phys. Chem. Chem. Phys. 2017,19, 27191-27203

Phys. Chem. Chem. Phys. 2017,19, 27191-27203

Publications

[50] Highly stable manganese oxide cathode materials enabled by Grotthuss topochemistry for aqueous zinc ion batteries, Zhao, F.; Li, J.; Chutia, A.; Liu, L.; Kang, L.; Dong, H.; Tan,  Y.; Parkin, I. P.; He, G. Energy Environ. Sci. 2024, 17, 1497.

[49] Modulating Aluminum Solvation with Ionic Liquids for Improved Aqueous-Based Aluminum-Ion Batteries. Lahiri, A.*; Guan, S.; Chutia, A.* ACS Appl. Energy Mater. 2023, 6, 23, 11874.

[48] Computational modelling in catalytic science, Catlow, C. R. A.*; Chutia, A.*; Quesne, M.* Phys. Chem. Chem Phys. 2023, 25, 20775.

[47] Electrocatalysis spectroscopic identification of active sites of oxygen-doped carbon for selective oxygen reduction to hydrogen peroxide. Liu, L.; Kang, L.; Chutia, A.; Feng, J.; Michalska, M.; Ferrer, P.; Grinter, D. C.; Held, G.; Tan, Y.; Zhao, F.; Guo, F.; Hopkinson, D. G.; Allen, C. S.; Yanbei, Y.; Gu, J.; Papakonstantinou, I.; Shearing, P. R.; Brett, D.l.J.; Parkin, I. P.; He, G. Angew Chem. Int. Ed. 2003, e202303525.

[46]Periodic corner holes on the Si(111)-7×7 surface can trap silver atoms, Osiecki, J. R.*; Shozo, S.*; Chutia, A.* Nature Communications, 2022, 13, 2973.

[45] Synthesis, Structural Investigation, Hirshfeld Surface Analysis, and Biological Evaluation of N-(3-Cyanothiophen-2-yl)-2-(thiophen-2-yl)acetamid. Çakmak, Ş.; Kansiz, S.; Azam, M.; Ersanlı, C.; İdil, Ö.; Veyisoğlu, A.; Yakan, H.; Kütük, H, Chutia, A. ACS Omega, 2022, 7, 13, 11320.

[44] A comparative study on the stability of the furfural molecule on the low index Ni, Pd and Pt surfaces. Khan, A.Z.; Alitt, J.; Germaney, R.; Hamada, I.; Wells,P. Dimitratos, N.; Catlow, C.R.A.; Villa, A.;* Chutia, A.* Royal Society Open Science, 2022, 9, 211516.

[43] A study on the stability of gold copper bimetallic clusters on the CeO2(110) surface. Chutia, A*, Catal. Commun. 2022, 162, 106376.

[42] Adsorption of transition metal catalysts on carbon supports: A theoretical perspective. Chutia, A.* Johnson Mathey Techonology Review, 2022, 66, 4 - 20.

[41] Furfural adsorption and hydrogenation at the oxide-metal interface: Evidence of the support influence on the selectivity of iridium-based catalysts. Campisi, S.; Motta, D.; Barlocco, I.; Stones, R.; Chamberlain, T. W.; Chutia, A.; Dimitratos, N.; Villa, A. ChemCatChem, 2022, (accepted)

[40] Structural investigations, Hirsfeld surface analyses, and molecular docking studies of a phenoxo-bridged binuclear Zinc(II) complex. Azam, M.; Sahoo, P. K.; Mohapatra, R. K.; Kumar, M.; Ansari, A.; Moon, S.; Chutia, A.; Al-Resayes, S. I.; Biswal, S. K. 2022, 1251, 132039.

[39] Selectivity of the Lindlar catalyst in alkyne semi-hydrogenation: a direct liquid-phase adsorption study. Cherkasov, N.; Murzin, D.; Catlow, C. R. A.; Chutia, A. Catal. Sci. Technol. 2021, 11, 6205.

[38] A computational investigation of the adsorption of small copper clusters on the CeO2(110) surface. Zhang, R.*; Chutia, A.*; Sokol, A. A.; Chadwick, D.; Catlow, C. R. A. Phys. Chem. Chem. Phys. 2021, 23, 19329.

[37] Unravelling Charge-transfer in Pd to pyrrolic-N bond for superior electrocatalytic performance. Sahoo, L.; Mondal, S.; Gloskovskii, A.; Chutia, A.*; Gautam1, U.K*, J. Mat. Chem. A, 2021, 9, 10966 - 10978.

[36] Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Wang, T.; Chutia, A.; Brett, D.; Shearing, P.; He, G.; Chai, G.; Parkin, I. V. Energy & Environmental Science, 2021, 14, 2639 - 2669.

[35] Surface-oxygen induced electrochemical self-assembly of mesoporous conducting polymers for electrocatalysis. Lahiri, A.*; Chutia, A.*; Carstens, T.; Endres, F.* J. Electrochemical Society, 2020, 167(11), 112501.

[34] Dual-Site-Mediated Hydrogenation Catalysis on Pd/NiO: Selective Biomass Transformation and Maintenance of Catalytic Activity at Low Pd Loading. Campisi, S.; Chan-Thaw, C. E.; Chinchilla, L. E.; Chutia, A.; Botton, G. A.; Mohammed, K. M. H.; M. H. Mohammed, Dimitratos, N.; Wells, P. P.; Villa, A. ACS Catalysis, 2020, 10(10), 5483 - 5492.

[33] A DFT and KMC Study on the Mechanism of Water Gas Shift Reaction on the Pd(100) surface. Chutia, A.*; Thetford, A.; Stamatakis, M.; Catlow, C. R. A. Phys. Chem. Chem. Phys. 2020, 22, 3620-3632

[32] Size-dependent Bond Dissociation Enthalpies in Single-Walled Carbon Nanotubes. Zeinalipour-Yazdi, C. D.; Loizidou, E. Z.; Chutia, A. Chem Phys. Lett. 2019, 731, 136628.

[31] Carbidisation of Pd Nanoparticles by Ethene Decomposition, with Methane Production. Jones, W.; Wells, P. P.; Gibson, E. K.; Chutia, A.; Silverwood, I. P.; Catlow, C. R. A.; Bowker, M. Chem Cat Chem 2019, 11, 1.

[30] Structure Selectivity of Supported Pd nanoparticles for Catalytic NH3 Oxidation resolved using combined Operando. Dann, Ellie K.; Gibson, Emma K.; Blackmore, Rachel H.; Catlow, C. Richard A.; Collier, Paul; Chutia, Arunabhiram; Erden, Tugce Eralp; Hardacre, Christopher; Kroner, Anna; Nachtegaal, Maarten; Raj, Agnes; Rogers, Scott M.; Taylor, S. F. Rebecca; Thompson, Paul; Tierney, George F.; Zeinalipour-Yazdi, Constantinos D.; Goguet, Alexandre; Wells, Peter P. Nature Catalysis, 2019, 2, 157.

[29] Directed aqueous-phase reforming of glycerol through tailored platinum nanoparticles. Callison, J.; Subramanian, N.D.; Rogers, S. M.; Chutia, A.; Gianolio, D.; Catlow, C. R. A.; Wells, P. P.; Dimitratos, N. Appl. Catal B: Environmental, 2018, 238, 618.

[28] The electronic properties of Au clusters on CeO2(110) surface with and without O-defects, Chutia, A.*; Willock, D. J.; Catlow, C. R. A. Faraday Discussions, 2018, 208, 123.

[27] J. S. Bhatt, A. Chutia, C. R. A. Catlow, M. Coppens: “Quantum and Statistical Mechanical Simulations for Porous Catalyst Modelling” Modern Developments in Catalysis, 2017; ISBN: 978-1-78634-121-1, World Scientific Publishing Europe Ltd.

[26] The adsorption of Cu on the CeO2(110) surface, Chutia A.*; Gibson, E. K.; Farrow, M. R.; Wells, P. P.; Scanlon, D. O.; Dimitratos, N.; Willock, D. J.; C. R. A. Catlow, Phys. Chem. Chem. Phys. 2017, 19, 27191.

[25] Tandem Site and Size Controlled Pd Nanoparticles for the Directed Hydrogenation of Furfural. Rogers, S. M.; Catlow, C. R. A.; Chan-Thaw, C. E.; Chutia, A.; Jian, N.; Palmer, R. E.; Perdjon, M.; Thetford, A.; Dimitratos, N.; Villa, A.; Wells. P. P. ACS Catalysis 2017, 7(4), 2266.

[24] Adsorption of formate species on Cu(h,k,l) low index surfaces. Chutia, A.*; Silverwood, I. P.; Callear, S.; Farrow, M. R.;  Scanlon, D. O.;  Wells, P. P.;  Bowker, M.; Parker, S. F.; Catlow  C. R. A.  Surface Science 2016; 653, 45.

[23] The reaction of formic acid with Raney TM copper. Callear, S. K.; Silverwood, I. P.; Chutia, A.; Catlow, C. R. A.; Parker, S. F.; Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences, 2016, 472, 126.

[22] Design and Control of Lewis Acid Sites in Sn-substituted Microporous Architectures. khaled, M.; Chutia, A.; Callison, J.; Wells, P. P.; Gibson, E. K.; Beale, A. M.; Catlow, C R. A.; Raja, R.; J. Mat. Chem. A, 2016, 4, 5706.

[21] Towards microfluidic reactors for in situ synchrotron infrared studies. Silverwood, I.P.; Al-Rifai, N.; Cao, E.; Nelson, D.J.; Chutia, A.; Wells, P.; Nolan, S.P.; Frogley, M.D.; Cinque, G.; Gavriilidis, A.; Catlow, C.R.A. Rev Sci Instrum. 2016, 87(2), 024101-1.

[20] Room Temperature Methoxylation in Zeolites: Insight into a Key Step of the Methanol-to-Hydrocarbons Process. O'Malley, A. J.; Parker, S. F.; Chutia, A.; Farrow, M. R.; Silverwood, I. P. Sakai, V. G.; Catlow C. R. A.; Chem. Comm. 2016, 52(14), 2897.

[19] Restructuring of AuPd nanoparticles studied by a combined XAFS/DRIFTS approach. Gibson, E. K.; Beale, A. M.; Catlow, C. R. A.; Chutia, A.; Gianolio, D.; Gould, A.; Kroner, A.; Mohammed, K. M. H.; Perdjon, M.; Rogers, S. M.; Wells, P. P. Chem. Mater. 2015, 27(10), 3714.

[18] Optimised photocatalytic hydrogen production using core–shell AuPd promoters with controlled shell thickness. Jones, W.; Su, R.; Wells, P. P.; Shen, Y.; Dimitratos, N.; Bowker, M.; Morgan, D.; Iversen, B. B.; Chutia, A.; Besenbacher, F.; Hutchings, G. Phys. Chem. Chem. Phys. 2014, 16, 26638.  

[17] A Theoretical Insight on the Interaction Between Pt Nanoparticles and functionalized Graphene. Chutia, A.*; Hamada, I.; Tokuyama, M. Surface Science 2014, 628, 116.

[16] Role of lone-pair and π-orbital interaction in formation of water nanostructures confined in carbon nanotubes. Chutia, A.*; Hamada, I.; Tokuyama, M. Chem. Phys. Lett. 2012, 550, 118.

[15] Orbital Interaction and Thermodynamic Stability in Ni Substituted Pd Nanoalloys. Chutia, A.*; Tokuyama, M. Chem. Phys. Lett. 2011, 515, 96.

[14] Local Electronic and Electrical Properties of Functionalized Graphene Nano Flakes.  Chutia, A.*; Sahnoun, R.; Deka, R. C.; Zhu, Z.; Tsuboi, H.; Takaba, H.; Miyamoto, A.  Physica B, 2011, 406, 1665.

[13] Influence of Surface Chemistry on the Electronic Properties of Graphene Nanoflakes. Chutia, A.*; Cimpoesu, F.; Tsuboi, H.; Miyamoto, A. Chemical Physics Letters 2011, 503, 91.

[12] An Electrical Conductivity Prediction Simulator Based on TB-QCMD and KMC. System Development and Applications.  Tsuboi, H.; Chutia, A.; Lv, C.; Zhu, Z. Onuma, H.; Miura, R.; Suzuki, A.; Sahnoun, R.; Koyama, M.; Hatakeyama, N.; Endou, A.; Takaba, H.; Carpio, C. A. D.; Deka, R.C.; Kubo, M.; Miyamoto, A. J. Mol. Str. Theochem 2009, 903, 11.

[11] Enhanced Gas-Sensing Behaviour of Ru Doped SnO2 Surface: A Periodic Density Functional Approach. Zhu, Z.; Deka R. C.; Chutia, A.; Sahnoun, R.; Tsuboi, H.; Koyama, M.; Hatekeyama, N.; Endou, A.; Takaba, H.; Kubo, M.; Del Carpio, C. A.; Miyamoto, A J. Phys. Chem. Solids, 2009, 70, 1248.

[10] Development of a Multi-Scale Electromigration Simulator Based on a Combination of Ultra Accelerated Quantum Chemical Molecular Dynamics and Kinetic Monte Carlo Methods Application to Cu Interconnects Lifetime Simulation. Tsuboi, H.; Kato, A.; Sato, H.; Hasekura, F.; Oda, S.; Setogawa, H.;  Abe, C.; Chutia, A.; Lv, C.;  Zhu, Z.; Miura, R.; Suzuki, A.; Sahnoun, R.; Koyama, M.; Hatakeyama, N.; Endou, A.; Takaba, H.; Del Carpio, C. A.; Deka, R. C.; Kubo, M.; Miyamoto, A. Japanese Journal of Applied Physics 2009, 48, 04C020.

[9] Influence of Organic Functional Groups on the Electrical Properties of Carbon Black: Theoretical Study.  Chutia, A.; Zhu, Z.; Sahnoun, R.; Tsuboi, H.; Koyama, M.; Hatekeyama, N.; Endou, A.; Takaba, H.;  Kubo, M.; Del Carpio, C. A.; Miyamoto, A.; Japanese Journal of Applied Physics, 2008, 47, 3147.

 [8] Theoretical Study on Electronic and Electrical Properties of Nanostructural ZnO. Zhu, Z.; Chutia, A.; Sahnoun, R.; Tsuboi, H.; Koyama, M.; Hatekeyama, N.; Endou, A.; Takaba, H.; Kubo, M.; Del Carpio, C. A.; Miyamoto, A.; Japanese Journal of Applied Physics, 2008, 47, 2999.   

[7] Development of A Seebeck Coefficient Prediction Simulator Using Tight-Binding Quantum Chemical Molecular Dynamics.  Tsuboi, H.; Ogiya, K.; Chutia, A.; Zhu, Z.; Chen, L.; Suzuki, A.; Sahnoun, R.; Koyama, M.; Hatekeyama, N.; Endou, A.; Takaba, H.; Kubo, M.; Del Carpio, C. A.; Miyamoto, A.; Japanese Journal of Applied Physics, 2008, 47, 3134. 

 [6] Theoretical Investigation on Electrical and Electronic Properties of Carbon Materials.  Chutia, A.; Zhu, Z.; Tsuboi, H.; Koyama, M.; Endou, A.; Takaba, H.; Kubo, M.; Del Carpio, C. A.; Selvam, P.; Miyamoto, A.; Japanese Journal of Applied Physics, 2007, 46, 2650.

[5] Theoretical Simulation of Dielectric Breakdown by Molecular Dynamics and Tight-Binding Quantum Chemistry Methods.  Zhu, Z.; Chutia, A.; Tsuboi, H.; Koyama, M.; Endou, A.; Takaba, H.; Kubo, M.; Del Carpio C. A.; Miyamoto, A.; Japanese Journal of Applied Physics, 2008, 47, 2999. 

[4] Development of a Thermal Conductivity Prediction Simulators Based on the Effects of Electron Conduction and Lattice Vibration. Tsuboi, H.; Setogawa, H.; Chutia, A.; Zhu, Z.; Chen, L.; Miura, R.; Koyama, M.; Endou, A.; Takaba, H.; Kubo, M.; Del Carpio, C. A.; Miyamoto, A.; Japanese Journal of Applied Physics, 2007, 46, 2609. 

[3] Quantum chemical studies on acidity of isomorphously substituted ZSM-5 zeolite. Mondal, P.; Chutia, A.; Hazarika, K.K.; Deka, R.C.; Bull. Catal. Soc. Ind. 2004, 3, 82.

[2] Electrochemical synthesis and characterization of stable colloidal suspension of graphene using two-electrode cell system. Danial, W. H.; Chutia, A.; Majid, Z. A.; Sahnoun, R.; Aziz, M. Proceedings of the 23rd Scientific Conference of Microscopy Society Malaysia (SCMSM), 2014; 020020-1–020020-7. DOI:10.1063/1.4919158.

[1] Development of Multi-Scale Electromigration Simulator using Ultra Accelerated Quantum Chemical Molecular Dynamics and a Kinetic Monte Carlo Method and its Application to Cu Interconnect. Tsuboi, H.; Chutia, A.; Chen, L.; Zhu, Z.; Miura, R.; Suzuki, A.; Sahnoun, R.; Koyama, M.; Hatakeyama, N.; Endou, A.; Takaba, H.; Carpio, C. A. D.; Deka, R. C.; Kubo, M.; Miyamoto, A. International Conference on Solid State Devices and Materials; 2008. DOI:10.7567/SSDM.2008.C-8-3.